WOndBkrenlable and Nonsmooth optimizatri
نویسندگان
چکیده
Eondifferentiahb cw nonsrnooth optimization-a I hr;~nch of nin tlicrnn tics n o more than 15 to 30 years ojd, I ' P ~ T ( * S P I I ~ S an area of central importance to the development o" met'lodolocyirnl lools for systems analysis. Two rneefinys her-, heen IIPBC~ a t Il:1\S/1, 0~ t l ~ i s lopic and a stn;.!? gr011p of sr?101arc is engng~d in repearrh in 111iq fieM ant the Jnstifute. h the fn?:oaring contri!)ution t5le authors try to provide an insiyl,! into this complex matter.
منابع مشابه
A General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming
For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints, we define a new gap function that generalizes the definitions of this concept in other articles. Then, we characterize the efficient, weakly efficient, and properly efficient solutions of the problem utilizing this new gap function. Our results are based on $(Phi,rho)-$invexity,...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملSufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones
In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملOptimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone
In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.
متن کامل